Physical Dynamics (SPA5304) – Exercise Class Week 2 (20-Jan-2017)

Problem 1

A billiard ball of mass m moving on a horizontal plane with initial velocity $v := |\vec{v}|$ scatters off an identical ball which is initially at rest. The collision is completely elastic (i.e. the energy is preserved in the process) and there is no friction.

- 1. Using appropriate conservation laws, show that the velocities \vec{v}_1 and \vec{v}_2 of the first and of the second ball after the collision are orthogonal.
- 2. Determine $|\vec{v}_1|$ and $|\vec{v}_1|$ as functions of v and of the angle θ formed by the initial velocities \vec{v} and \vec{v}_1 .

Problem 2

A particle of mass m is subject to an attractive force \vec{F} towards point O. The modulus of the force is given by $|\vec{F}| = b/r^n$ where n is a positive integer larger than 1, b is a (positive) constant, and r is the distance between the position of the particle and the point O. At time t = 0 the particle is at a distance a from O and is moving with speed v away from point O.

- 1. Calculate the potential of the particle.
- 2. Determine the minimum initial velocity such that the particle will be able to reach an infinite distance from point O.
- 3. For the case where the modulus of the initial velocity is equal to $\sqrt{b/[(n-1)m a^{n-1}]}$, determine the maximum distance from O that the particle can achieve.