Physical Dynamics (SPA5304) – Exercise Class Week 1 (13/1/2017)

1. Consider the vectors

 $\vec{A} = (-3, 1, 2), \qquad \vec{B} = (-1, 2, 2).$

Compute:

- (a) $\|\vec{A}\|$ and $\|\vec{B}\|$
- (b) $\vec{A} + \vec{B}$ and $\vec{A} \vec{B}$
- (c) $\vec{A} \cdot \vec{B}$
- (d) $\vec{A} \times \vec{B}$
- (e) Let θ be the angle between \vec{A} and \vec{B} . Using the results from (c) and (d), show that $\sin^2 \theta + \cos^2 \theta = 1$ as expected.
- (f) Show that $\vec{A} \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\vec{A} \times \vec{B}) = 0$. Why is that so?

2. In the following cases, compute $\frac{df}{dt}$ where x = x(t)

- (a) $f(x,t) = x^n$
- (b) $f(x,t) = xe^x + 2t$
- (c) $f(x,t) = \sin^2(2x)$
- 3. (a) Assume that a particle experiences a force \vec{F} that depends on the position $\vec{r} = (x, y, z)$. When \vec{F} is given by

$$\vec{F}(\vec{r}) = (y^2, 2xy, 0),$$

compute the work done by force \vec{F} while the particle is moved inside the *x-y* plane (where z = 0) from point *O* to point *P* along three different paths \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_3 given below:

Does the result suggest that the force is conservative or not?

(b) Compute the work when the force is given by

$$\vec{F}(\vec{r}) = (y, xy^2, 0)$$

for paths \mathcal{P}_1 and \mathcal{P}_2 . Does the result suggest that the force is conservative or not?

(c) If force \vec{F} is conservative, it is given in terms of a potential $V(\vec{r})$ as $\vec{F} = -\vec{\nabla}V$. Show that a conservative force \vec{F} satisfies

$$\vec{\nabla} \times \vec{F} = 0.$$

This is a necessary condition for the force \vec{F} to be conservative. (Actually, in normal situations this is a sufficient condition as well.)

- (d) For the forces \vec{F} given in (a) and (b), check if the above condition is satisfied or not. When it is satisfied, find the potential that gives the force.
- 4. A particle with mass m is connected to a spring and allowed to move in the x direction. If the equilibrium position is at x = 0, the elastic force acting on the particle is F = -kxwhere k is the spring constant.
 - (a) Show that the potential is $V = \frac{k}{2}x^2$.
 - (b) Derive the equation of motion and rewrite it in terms of $\omega \equiv \sqrt{\frac{k}{m}}$.
 - (c) Integrate the equations of motion and find x(t) explicitly in terms of the initial values $x(0), \dot{x}(0)$.
 - (d) Show explicitly that the total energy E = T + V is constant in time where $T = \frac{m}{2}\dot{x}^2$ is the kinetic energy.