RIGID BODY ROTATION

THE MOMENT OF INERTIA TENSOR

A rigid body has six degrees of freedom, three giving the position of the centre of
mass, and three specifying the orientation. The simplest form of rotation is rotation
of a rigid body about a fixed axis with angular velocity w. The vector angular velocity
is defined as

w=nao ,

where n is a unit vector specifying the direction of the axis of rotation and & is the
rate at which angle o is swept out around the axis in the sense in which a right hand
screw would advance along the direction of n.

The rigid body is composed of many point masses m; each of which we assume
to be located at position r; with respect to a fixed origin O on the axis of rotation.
The effect of rotation is that each particle sweeps out a circle around the axis of
rotation and its position vector rigidly sweeps around the axis of rotation as well.
The consequence is that the velocity of any particle m; has the same simple form
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This special form for the velocity enables us to re-express the kinetic energy of a
rigid body in a special way.
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where L is the total angular momentum of the rigid body with respect to the origin
O on the axis of rotation from which positions are measured.

Next we can ask if the angular momentum L can be expressed in terms of the
angular velocity w. To analyze this we write
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or, using an identity for the triple vector product, ax (bx ¢) = (a- ¢)b— (a- d)e,

L= Zmi[("i crw — (1 - w)r]

From this expression we see that L is a linear function of w. To see this in more
detail we can look at one component of L, say the z - component and expand the
scalar products above to get

Ly = Z m’[(a‘-g + yzz + Z?)wz — (ziws + Yiwy + ziwz)wi] ,
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A similar argument goes through for the y and » components of L so that we can
write the linear relationship between L and w as
Lz = lgzWg + Iwywy + Iwzwz )
Ly =I,w, + Iyywy + Ljw,

Lz = lzpWg + Izywy + Izzwz ’

where the coefficients I;; are defined by
Lo=) mi(y; +2)) . Ly=> mi@i+z) , L.=) mi]+y])
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I, = — Zmzxzzz =1
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Iyz = - Zmzyzzz = Izy
i

This relation can be thought of in terms of matrix multiplication as

L, I, Ixy I, Wy
Ly | = Iyz Iy Iy Wy
L, I, Izy I, Wz

PRINCIPAL AXIS SYSTEM

The important fact that this result demonstrates is that the angular momentum
L in general does not point in the same direction as the angular velocity w. The
relation between them depends on the nine component object I represented above as
a matrix. the quantity I is called the moment of inertia tensor and is an example of
a symmetric (the matrix is symmetric) second rank (nine components) tensor. In the
most general situation, all nine elements of I are non-vanishing. However, from the
definitions of the elements I;;, it is clear that the values of these components depend
on the coordinate system we have chosen. In a different coordinate system the values



would be different. Because Iissymmetric, it is a mathematical theorem that there is
always at least one coordinate system in which I is diagonal, i.e., I,,,I,,,I.. are non-
vanishing but I,,,I,.,I,. are all zero. Such a coordinate system is called a principal
axis system for the rigid body. In such a coordinate system, each coordinate axis is a
principal axis. We can also characterise a principal axis by saying that it is a direction
such that if we rotate the object about that direction, the angular momentum and
angular velocity will be parallel.

There are symmetry reasons why some of the off-diagonal elements of I may
vanish. For example, if the z — y plane is a plane in which the rigid body is reflection
symmetric, then for each mass m; at position (z;,y;, z;) there must be an identical mass
m; at the mirror position (z;,y;, —z;). It is easy to see from the definition of I,, or I,
that the terms must then cancel in pairs (—m;z;2; — m;z;(—2;) = 0) so that I, = 0 and
by the same argument I,, = 0. If we can find two planes of mirror symmetry at right
angles to each other, then all off-diagonal elements of I will vanish giving a principle
axis system. If the object has an axis of rotational symmetry, it is easy to see that
it must also have two mirror symmetry planes which meet at right angles and whose
intersection is the axis of rotational symmetry thereby again giving a principal axis
system.

PARALLEL AXIS THEOREM

If we choose a different coordinate system, the elements of I will be different.
Sometimes we can use this to our advantage. It is usually simplest to work out the
elements of I in the centre of mass frame where we denote it by I*. If we have
an origin O elsewhere, we can relate I calculated at O to I" calculated in a parallel
coordinate system with origin at the centre of mass O*. If R is the translation vector
taking us from origin O to origin O* then the position vectors of masses m; in the two
frames of reference are related by

r,=R+r1}

We then calculate

Lo =S mi(y? +28) = Y mil(Ry +97)* + (R. +2)°]

Lo = > m[R2 + R? + 2Ry} + 2Rz} + () + ()7
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but, because in the centre of mass frame we have by its definition that
Zmir’{ =0 y

the cross-terms above vanish,
ZmiQRyy;" =2R, Zmiy;" =0 , ZmﬂRzz;‘ = 2R, Zm,z:‘ =0 ,
giving
La = M(Ry + R2) + ) mil(y})* + ()°]
i

or

Similarly, for an off diagonal element we have
Ly=—Y mimiyi = — Y mi(Re +})(Ry +y7)

= - mi[R.Ry + Roy} + Ryz} + z}y;]
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where the cross terms again vanish. All other components of I can be treated similarly
to give the result
I= ITranslation + I s

where It,qnsiation 1S glven more explicitly as

M(R:+R)) —MR,R, —MR,R,
ITranslation - _MRwa M(Ri + Rﬁ) —MRsz
~MR.,R,  —-MR.R, M(R:+R?)

EULER EQUATIONS OF MOTION

If a rigid body moves with respect to the coordinate system, it is clear that in
general the elements of I will change with time. Therefore, once we have found a
principal axis system the only way to guarantee that we remain in it is to fasten the
coordinate system to the rigid body so that it moves with the body. Such a frame
of reference is called a body fized frame of reference. We denote the three coordinate
directions of a body fixed frame by unit vectors e;, e;, e; in contrast to the three
coordinate directions 14, j, kof a space fixed inertial frame. In a body fixed principal
axis system we write the relation between L and w in the simpler form

Ly L 0 0 w1
Lg = 0 12 0 Wy
L3 0 0 I3 w3

Here the subscripts 1,2,3 refer to components along the three axes e, e, e;, and the
diagonal elements I, I, I3 are called the principal moments of inertia.



Up to this point we have considered rotation about a fixed axis. However, there is
a general theorem of rigid body mechanics which says that the most general motion of
a rigid body is a translation of its centre of mass plus a rotation with angular velocity
w about an instantaneous axis of rotation. As time passes, this axis of rotation
may move with respect to the body unlike our earlier assumption. An important
kinematical result is that for any vector quantity B, we have the result

dB _dB

== - = +wx B
dt linertial dt body fived

Here the rates of change are calculated respectively in the space fixed inertial frame
i, j, k and in the body fixed frame e, e, e3. By using this result we can analyze
the Newtonian angular momentum equation of motion in the body fixed frame with
considerable simplification. For example, it is natural to analyze the rotation of the
Earth from within the frame which rotates with the Earth. To see how this works
recall that for a body that is torque-free we have

dL
dt

inertial N
By using the kinematical result above we can re-write this in the body fixed frame as

dL

E +wXL:0

body fired

However, in the body fixed principal axis system we write L as
L = (Lyw, Lwe, I3ws)
where we use the principal moments of inertia. Correspondingly we have
wx L= (wws(I3 — I),wswi (I} — I3),wiwa(l2 — 1))
giving

dL

— = (w1, Ihws, 3w
dt body fized (1 1 f2ne, 43 3)

= —w X L= (wows(lr — I3),wswi (I3 — I1),wiwa(l; — I5))
These are called the Euler equations for the angular velocity components and they
hold in the rotating body fixed frame. We may write them as
Lo = wows(Iy — I3)
Loy =wswi (I3 - 1)
Lws = wiwe (1 — L)
More generally, if there were a torque N = (N, N2, N3) acting on the rigid body
the Euler equations simply have an additional term on the right hand side,
Lwi = wows(Ip — I3) + Ny,
Ly = wawi (I3 —I1) + N2,
Loz = wiws(fh — I2) + N3



LAGRANGIAN EQUATIONS FOR A ROTATING TOP

The Euler equations above are a re-expression of the Newtonian angular momen-
tum equation. To get a true Lagrangian description of rotation we need appropriate
generalised coordinates to describe the orientational degrees of freedom of the rigid
body. These coordinates are the Euler angles. To make things simple, let us consider
a body with an axis of rotational symmetry which has one point on this axis fixed,
for example a pivot point. We can use the Euler angles to express the kinetic energy
and thereby get a Lagrangian for the system.

THE LAGRANGIAN

We take the e; axis to be the axis of rotational symmetry: it is sometimes called
the figure axis. With an axis of rotational symmetry two of the principal moments
of inertia are equal, I, = I, while the third, I3, is unequal to these two. In the body
fixed frame we can write the angular momentum and angular velocity as

L= Il(wlel + wzez) + I3(.U383

W= wie + wze + wszes

so the the kinetic energy can be written as

1 1 1 1
T = 511(wf +wl) + 5[3w§ = 511 (w? —wi) + 5[3&;3

We can easily express w in terms of the rates of change of the Euler angles 6, ,.

Define the unit vector
kxes kxes

n— =
|k x es] sin

?

which defines the axis of rotation if the angle 6 increases with ¢ and ¢ held fixed. The
total angular velocity is then just a sum of three independent contributions, one for
each of the Euler angles,

w=0n+ dk+es

We then find the kinetic energy by calculating
ws=w-e;=pk-e3+1 = pcosh+1
wg = ¢?cos® O + )% + 2¢n) cosb |
W=w-w=6>+ ¢+ + 20k- e3 = 6> + ¢* + > + 2y cos b



Finally,
w? — w2 = 0% + $*(1 — cos? §) = % + $*sin% 0

Putting this together gives the kinetic energy as
T = %Il (6% + % sin® ) + %I3((Z.5 cos 0 + ¢))?

If we have a uniform gravitational field acting in the negative k& direction there will
also be a potential energy
V =Mglcosh

where ¢ is the distance from the piviot to the centre of mass of the top. The full
Lagrangian is then

1 . . 1 . .
L= 511(02 + ¢*sin® 9) + 5[3(¢cos0 +4)? — Mglcosb

THE LAGRANGE EQUATIONS

We see by inspection of L that ¢ and ¢ are cyclic variables so that there must
be two corresponding conserved generalised momenta p, and p,. The angle 6 is not
cyclic so we have for the first lagrange equation

6 — I, ¢? sin @ cos 0 + Is(¢ cos O + 1)) psinf — Mglsinh =0

The next two equations are simply

dpy _ dpy _
dt_O T dt =0

where the generalised momenta are

Py = I, ¢% sin? 0 + I3(¢ cos 6 + 1)) cos § = constant
Py = Iz(dcosb + ) = constant

These two momenta have a simple physical interpretation. We can show that
p¢:L-k:Lz , p¢:L-e3:L3

Thus two components of L are conserved, the component along the space fixed &
axis, L., and the component along the body fixed e; axis, Ls.



