
LAGRANGE EQUATIONS AND D’ALEMBERT’S PRINCIPLE

Newton’s equations are the fundamental laws of non-relativistic mechanics but

their vector nature makes them simple to use only in Cartesian coordinates. The

Lagrange equations represent a reformulation of Newton’s laws to enable us to use

them easily in a general coordinate system which is not Cartesian. Important exam-

ples are polar coordinates in the plane, spherical or cylindrical coordinates in three
dimensions. The great power of the Lagrange method is that its basic equations take

the same form in all coordinate systems.

In the Newtonian description we start from the second law applied to each of the

particles in an N-particle system,

mi
d2rrri

dt2
= mir̈rri = FFFi , N = 1, . . . , N . (1)

To get away from a vector description, we can transform these N equations into a
single statement about a scalar quantity which is equivalent to all N equations. To do

this we introduce the concept of a virtual displacement. A virtual displacement of the

system is defined as an arbitrary displacement δrrri of each particle but with the time

frozen. In other words, it is not the physical displacement that would happen in a time

δt, rather it is a mathematical displacement which we can carry out conceptually at a

frozen instant of time. It then follows from (1) that for any choice of displacements,

N∑

i=1

(mir̈rri −FFFi) · δrrri = 0 . (2)

If we start from (1), then (2) is trivially obvious. What is significant about (2),

however, is the statement that if (2) holds for arbitrary virtual displacements δrrri, then

all N Newton equations (1) must follow. Thus the entire set of Newton equations

is equivalent to the statement that (2) is true at each instant of time for any choice
of the virtual displacements. Interpreted in this sense, (2) is called D’Alembert’s

principle.

Our aim is to find a way to write Newton’s laws (1) in a way that is valid for

any coordinate system. We can use (2) to see how to do this. We now define a set of

generalised coordinates as any 3N numbers qi(t) whose values at time t uniquely specify

the position (configuration) of all N particles in the system. Any set of numbers with

this property, no matter how outlandish , will be acceptable as a coordinate system.

For example, the 3N components xi, yi, zi of the N three-vectors rrri are one possible
choice of generalised coordinates. Equally acceptable are the 3N numbers ri, θi, φi

describing the position of the N particles in spherical polar coordinates. What we

want to do then is transform from the vector coordinates rrri, i = 1, . . . , N , to the qj,

j = 1, . . . , 3N . In mathematical terms each of the vectors rrri can be regarded as a



function of the new coordinates qj,

rrr1 = rrr1(q1, q2, . . . , q3N ) ,

rrr2 = rrr1(q1, q2, . . . , q3N ) ,

...

rrrN = rrr1(q1, q2, . . . , q3N ) .

(3)

Just as we can express the rrri in terms of the qj, we assume that it is possible, given

the rrri , to go back uniquely to find the qj. In other words this transformation of

coordinates must be invertible, i.e., we can go both ways.

To give a very simple example, suppose we have only one particle with position
vector rrr = (x, y, z) in Cartesian coordinates. If we describe its position in spherical

polar coordinates r, θ, φ, we have

rrr = (x, y, z) = (r sin θ cosφ, r sin θ sin φ, r cos θ) .

Thus the three qj would be q1 = r, q2 = θ, q3 = φ, and for any set of values of the qj we
can calculate the value of the vector rrr. Likewise we can find the qj given x, y, z as

r =
√

x2 + y2 + z2 , θ = arccos(z/
√

x2 + y2 + z2) , φ = arctan(y/x) .

The Lagrange equations arise by simply carrying out the above change of variables

in D’Alembert’s principle (2). The details of this are a bit tedious but the final result is

impressive and easy to remember. No new physics is being introduced in this process

so the final result is exactly equivalent to Newton’s laws but it is in an extremely

useful form. We begin by noting that since the rrri are functions of the qj we can use
the basic definition of partial differentiation to express the virtual displacements as

δrrri =
3N∑

j=1

∂rrri

∂qj
δqj , (4)

where the δqj describe the virtual displacement expressed as changes in the variables
qj. This enables us to transform the force term in (2) as

N∑

i=1

FFFi · δrrri =
N∑

i=1

FFFi ·
3N∑

j=1

∂rrri

∂qj
δqj =

3N∑

j=1

(
N∑

i=1

FFFi ·
∂rrri

∂qj

)
δqj =

3N∑

j=1

Qjδqj ,

where I have simply interchanged the summations over i and j and

Qj =
N∑

i=1

FFFi ·
∂rrri

∂qj

is called the generalised force associated with coordinate qj.

Next we transform the acceleration terms in(2) by the use of (4).

N∑

i=1

mir̈rri · δrrri =
3N∑

j=1

(
N∑

i=1

mir̈rri ·
∂rrri

∂qj

)
δqj .



To simplify the inner sum here we write

N∑

i=1

mir̈rri ·
∂rrri

∂qj
=

d

dt

(
N∑

i=1

miṙrri ·
∂rrri

∂qj

)
−

N∑

i=1

miṙrri ·
d

dt

(
∂rrri

∂qj

)
, (5)

where we use the product rule for derivatives. Since both rrri(t) and qj(t) vary with

time we can use the chain rule to write

ṙrri =
3N∑

j=1

∂rrri

∂qj
q̇j . (6)

This tells us mathematically that ṙrri is a function that depends on both the qj and the

q̇k separately. Since the q̇k appear linearly it is easy to see that

∂ṙrri

∂q̇j
=

∂rrri

∂qj
. (7)

We get a second identity by again applying the chain rule

d

dt

(
∂rrri

∂qj

)
=

3N∑

p=1

∂2rrri

∂qp∂qj
q̇p =

∂

∂qj

(
3N∑

p=1

∂rrri

∂qp
q̇p

)
=

∂ṙrri

∂qj
. (8)

Here in the last step we used (6). Finally we use the results (7) and (8) to transform

the two terms on the right hand side of (5). In the first term of (5) we use (7) to

write

d

dt

(
N∑

i=1

miṙrri ·
∂rrri

∂qj

)
=

d

dt

(
N∑

i=1

miṙrri ·
∂ṙrri

∂q̇j

)
=

d

dt

(
∂

∂q̇j

(
N∑

i=1

1
2
miṙrr2i

))
=

d

dt

(
∂T

∂q̇j

)
,

where T is the total kinetic energy of the system. In the second term of (5) we use

(8) to obtain

N∑

i=1

miṙrri ·
d

dt

(
∂rrri

∂qj

)
=

N∑

i=1

miṙrri ·
(

∂ṙrri

∂qj

)
=

∂

∂qj

(
N∑

i=1

1
2
miṙrr2i

)
=

∂T

∂qj
.

Putting all this together gives D’Alembert’s principle now in the form

3N∑

j=1

(
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
− Qj

)
δqj = 0 .

However, this equation must hold for all possible virtual displacements δqj in the new

variables. That is possible only if for each value of j we have

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj . (9)

These equations for j = 1, . . . 3N are one form of the Lagrange equations.

For conservative forces FFFi = −∇∇∇iV , this simplifies further. In that case the gener-

alised force (3) becomes (remember the chain rule)

Qj =
N∑

i=1

FFFi ·
∂rrri

∂qj
= −

N∑

i=1

∇∇∇iV · ∂rrri

∂qj
= − ∂V

∂qj
,



so that Lagrange’s equations (9) become

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= − ∂V

∂qj
. (10)

Since the potential energy is a function of position we can regard it as a function

V (q1, q2, . . . , qN ) which depends on the qj but not on the q̇j. Thus ∂V/∂q̇j = 0, and for

conservative systems Lagrange’s equations finally take the form

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 , j = 1, . . . , 3N , (11)

where the Lagrangian L is defined to be

L = T − V (12)

In the Lagrangian formulation of mechanics we may use any coordinate system

we please and the equations of motion look the same. The only requirement is that

we must express the kinetic energy T and the potential energy V in terms of the qj

and q̇j which we have chosen. In practice, the safe way to do this is to first write T

and V in Cartesian coordinates, and then use the transformation equations (3) to get

T and V in terms of the new coordinates. Each of the coordinates qj is said to describe

a degree of freedom of the system, i.e., each qj describes an independent way in which

the system can move. We now have generalised coordinates qj and generalised forces

Qj so it is natural to introduce generalised momenta pj defined as

pj =
∂L

∂q̇j
, j = 1, . . . , 3N . (13)

The Lagrange equations now look like

dpj

dt
=

∂L

∂qj
.

Note that if L does not depend upon the particular variable qk, we then have ∂L/∂qk = 0
and we say that the variable qk is a cyclic or ignorable coordinate. From Lagrange’s

equations in the form (13) we see that dpk/dt = 0 so that pk is constant in time, i.e., it

is conserved. This is the basis of all conservation laws in Lagrangian mechanics.


