
The numbers in square brackets in the right-hand margin indicate the provisional allocation
of maximum marks per sub-section of a question. Unseen parts are printed in red.

[Part marks]

1. (a) A lattice is a mathematical construction, an infinite array of points in space for
which the environment of any point is identical with the environment of any other
point. A basis is an arrangement of atoms or ions that are associated with each
lattice point to make a crystal. A unit cell is a region that can be repeated by
translation to reproduce the whole structure. The conventional cubic unit cell for
the face-centred cubic lattice contains 4 lattice points. [4]

(b) The primitive translation vectors of the face-centred cubic lattice are those joining
a lattice point at the origin to three of its nearest neighbours, and so they may be
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though other choices of sign are possible. Allow 1 mark for correct selection of
real space lattice vectors, 1 for correct definition of reciprocal lattice vectors. [5]

(c) Missing orders describe cases in which a simple application of Bragg’s law to the
conventional unit cell predicts a diffracted beam, but interference between atoms
of the basis or, for nonprimitive unit cells, between the bases at different lattice
points, reduces the intensity to zero. [1]

If a cubic crystal with cubic cell side a = 0.42 nm is illuminated with x-rays of
wavelength λ = 0.154 nm, the exit angles away from the incident beam will be 2θ,
where θ is given by Bragg’s law

2d sin(θ) = nλ,

or

sin(θ) =
λ
√
h2 + k2 + l2

2a
,

and five lowest-order diffracted beams will have (h, k, l) equal to (1, 0, 0), (1, 1, 0),
(1, 1, 1), (2, 0, 0) and (2, 1, 0). The corresponding angles 2θ are 21.28 degrees, [4]
30.05 degrees, 37.03 degrees, 43.02 degrees and 48.40 degrees. Allow 1 mark for
quoting Bragg’s law, 1 for

√
h2 + k2 + l2, 1.5 for the angles, 0.5 for converting to

the double angle.
If the crystal has a face-centred cubic structure the observed reflections have h,
k and l all even or all odd, and so only the (111) and (200) reflections will be
observed. [1]

(d) If RbF forms face-centred cubic crystals, with a basis of Rb+ at (0, 0, 0) and F− at
(1

2
, 0, 0) then each ion has six nearest neighbours, arranged along the positive and

negative x, y and z axes. [1]

If the energy per ion pair is

U(r) = A exp(−r/ρ)− αq2

4πε0r
,

where r is the nearest-neighbour separation, q is the charge on an ion, and α =
1.748, then the positive term represents short-range repulsion between the closed-
shell ions, arising from the Pauli exclusion principle, and the negative term repre-
sents the long-range Coulomb attraction between like charges. [1]

The equilibrium separation is given by ∂U/∂r = 0, so

A

ρ
exp(−r/ρ) =

αq2

4πε0r2
,
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and if ρ = 0.03 nm and the nearest-neighbour separation is r0 = 0.282 nm this
gives

A =
αq2

4πε0r2
0

ρ exp(r0/ρ)

=
1.748 (1.602× 10−19)

2

4π × 8.854× 10−12 (0.282× 10−9)2 0.03× 10−9 exp(0.282/0.03)

= 1.84× 10−15 J

the units should be given, but no marks deducted if not. Allow 1 mark for dU/dr =
0. Note that if, in error, the condition is taken as U=0 one findsA = 1.73×10−14 J,
for which allow 1 mark. [3]

PHYS3C25 Answers/2003 CONTINUED

3



2. (a) Either the periodic or fixed boundary condition model is acceptable. For periodic
boundaries, consider a crystal in the form of a cube of side L: in each direction
assume running waves of the form

φ(x, t) = Aei(kx−ωt),

and require
φ(x+ L, t) = φ(x, t)

so that
eikL = 1

or
k = n

2π

L
giving a density of states in each dimension of

g(k) =
L

2π

or an overall density of states in k-space of

g(k) =
(
L

2π

)3

.

Now the number of states with k = |k| between k and k + dk is the density of
states multiplied by the volume of a shell of thickness dk in k-space, so that

g(k)dk = 4πk2g(k)dk = 4π
(
L

2π

)3

k2dk.

But the number of states with frequency between ω and ω+dω is the same, for the
isotropic solid, as the number in the shell between k(ω) and k(ω)+(dk(ω)/dω)dω,
so that

g(ω)dω = 4π
(
L

2π

)3

k2 dk(ω)

dω)
dω,

and, writing L3 = V , we have [5]

g(ω) =
V

2π2
k2 dk

dω
.

For full marks, require evidence of 1-D density of states, idea of spherical symme-
try, and relation between k-space and ω-space density of states.

(b) The Debye model assumes that the allowed vibrations of a solid may be repre-
sented by non-interactiong nondispersive elastic waves, with velocity independent
of direction, occupied according to the Bose-Einstein distribution. The Debye fre- [3]
quency ωD represents a correction to the theory, compensating for the incorrect
assumption about dispersion by cutting off the frequency spectrum in such a way
as to include the correct total number of degrees of freedom (or, equivalently, to
obtain the correct specific heat in the high temperature limit). No marks for stating [2]
that it is a cut-off frequency, or the highest frequency that can occur in the lattice,
or similar.
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(c) If the thermal energy of a three-dimensional crystal is written as

U(T ) = A
∫ ωD

0

ω3

exp(h̄ω/kBT )− 1
dω,

where A is independent of temperature, then we may obtain the specific heat by
differentiation:

C(T ) =
∂U

∂T
= A

∫ ωD

0

ω3 h̄ω
kBT 2 exp(h̄ω/kBT )

[exp(h̄ω/kBT )− 1]2
dω.

Now it is convenient to convert the integral to dimensionless form by writing

x =
h̄ω

kBT
,

so that
ω =

kBTx

h̄
giving

C(T ) = A
∫ xD

0

(
kBTx

h̄

)3
x
T

exp(x)

[exp(x)− 1]2
kBT

h̄
dx

= A

(
kB

h̄

)4

T 3
∫ xD

0

x4 exp(x)

[exp(x)− 1]2
dx,

where [2]

xD =
h̄ωD

kBT
.

At low temperatures, xD may be taken to be infinite and the integral over x becomes
a constant, so C(T ) ∝ T 3. [1]

At high temperatures x is small, so we expand

x4 exp(x)

[exp(x)− 1]2
≈ x4(1 + x...))

[1 + x+ ...− 1]2
≈ x2,

and then

C(T ) = A

(
kB
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)4

T 3
∫ xD

0
x2dx

= A

(
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3
D
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3

(
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)3
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kBω

3
D

3h̄
,

which is independent of temperature. Allow 1 mark each if the T 3 and T 0 depen- [2]
dencies are quoted, not derived.
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(d) We know that the thermal conductivities of insulators are given by [2]

κ =
1

3
CvΛ,

where C is the specific heat, v the sound velocity, and Λ the phonon mean free
path. We may take v to be independent of temperature. The specific heat does not
depend on the sample size, so all we need to consider is the mean free path. (i) at
4 K we expect boundary scattering to dominate: thus we expect [2]

κsingle crystal

κpolycrystal

≈ 10−3

10−6
= 1000.

(ii) at 1000 K phonon-phonon scattering dominates, which is size-independent, so
we expect [1]

κsingle crystal

κpolycrystal

= 1.
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3. (a) A degenerate Fermi gas is one in which, for the majority of occupied states, the
occupation probability is close to unity. Alternatively, one may express this as the
fact that the chemical potential is large compared with kBT . [2]

When two metals are brought into contact, electrons flow from one to the other in
order to equalise the chemical potentials. The flow of charge sets up a potential
difference – the contact potential. [1]

Thermal emission is the escape of electrons with high enough energies over the
confining potential barrier at the surface of the emtal. [1]

In field emission the application of a strong electron field distorts the potential
outside the metal to form a narrow barrier through which electrons can tunnel. [1]

(b) If the density of states in a free electron gas is written as

g(E) = B
√
E,

then the Fermi energy is defined by

N =
∫ EF

0
g(E) dE,

where N is the total number of electrons in the sample, so that

N = B
[
2

3
E3/2

]EF

0
=

2

3
BE

3/2
F .

Hence we know B, and [2]

g(EF) =
3N

2EF

.

Note that there was a misprint in the paper – 2/3 instead of 3/2 – so give full marks
for either. Given that for a sample of volume V

B = V
(

2me

h̄2

)3/2

/(2π2),

and, from our previous result,

EF =
[
3N

2B

]2/3

,

so for gold with an electron concentration of 5.9× 1028 m−3 [4]

EF =

[
6π2N

2V

]2/3
h̄2

2me

=
[
3π25.9× 1028

]2/3 (1.05× 10−34)2

2× 9.11× 10−31
= 8.78×10−19 J = 5.48 eV.

If we require

g(EF) =
3N

2EF

=

[
1.602× 10−19

40

]−1

,

then

N =
40

1.602× 10−19

2× 8.78× 10−19

3
= 146.1,
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implying a cube of side given by

L35.9× 1028 = 146.1,

or [3]
L = 1.35 nm.

Note that following through with the incorrect formula gives EF = 3.19 eV, and
a volume 3.24× 10−27 m3, whereas using the correct EF with the incorrect g(EF )
gives 5.57× 10−27 m3

(c) The key points are

• the underlying smooth curve represents nearly free electron states, arising
from the s orbital of gold; [1]

• the structure between about 0 eV and +6 eV arises from the more tightly
bound d states; [1]

• we can expect absorption of light corresponding to excitation of electrons from
below the Fermi energy to above it. Whereas this absorption would be almost
independent of energy for a free electron metal, here there will be a sharp
increase of absorption for energies above about 2 eV (Fermi energy minus
energy of top of d levels). Thus reflected light contains a decreased amount of
green and blue, giving gold its characteristic yellowish colour. For the colour, [4]
give some credit for discussing the mixture of wavelengths, and for involving
absorption/optical transitions.
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4. (a) If the matrix elements of the Hamiltonian H between atomic functions φj(r) cen-
tred on sites j satisfy∫

φ∗i (r)Hφi(r) dr = −α∫
φ∗i (r)Hφj(r) dr = −β if n and m are nearest neighbours,∫
φ∗i (r)Hφj(r) dr = 0 otherwise

and in addition ∫
φ∗i (r)φj(r) dr = δij,

where the integrals are taken over the whole crystal.
If we take

ψk(r) =

√
1

N

N∑
n=1

eiknaφn(r)

then ∫
ψ∗

k(r)ψk(r) dr =
1

N

N∑
n=1

e−ikna
N∑

m=1

eikma
∫
φ∗n(r)φm(r) dr

=
1

N

N∑
n=1

N∑
m=1

eik(m−n)aδmn

=
1

N

N∑
n=1

1

= 1,

so the wavefunction is normalised. Award 0.5 mark for stating the normalisation [2]
condition.
We evaluate the expectation value of the energy (implicitly using the normalisation)
as

E(k) =
∫
ψ∗

k(r)Hψk(r) dr =
1

N

N∑
n=1

e−ikna
N∑

m=1

eikma
∫
φ∗n(r)Hφm(r) dr

= − 1

N

N∑
n=1

α− 1

N

N∑
n=1

eikaβ − 1

N

N∑
n=1

e−ikaβ

=
1

N

N∑
n=1

1

= −α− 2β cos(ka),

where we have used the fact that N + 1 is equivalent to 1. [3]

(b) The sketch shows the resulting dispersion relation for values of k between −π/a
and π/a. [1]
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The cosine is bounded above and below by 1 and −1 respectively, so the energy
ranges from −α− 2β to −α+ 2β, giving a band width of 4β. [1]

The effective mass is given by [1]

1

m∗ =
1

h̄2

d2E

dk2
.

in this case [1]
1

m∗ =
2a2

h̄2 β cos(ka),

so near the bottom of the band, where k = 0, cos(ka) = 1 and [1]

m∗ =
h̄2

2βa2
,

while near the top of the band k = π/a, cos(ka) = −1, and [1]

m∗ = − h̄2

2βa2
.

As the valence band is usually narrower than the conduction band, and as the ef-
fective mass is inversely proportional to β, which is proportional to the bandwidth,
one expects a hole in a semiconductor to be heavier than an electron. [1]

(c) If electric field E is applied to the system, the rate of change of the electron group
velocity is [1]

dvg

dt
=

1

m∗
dh̄k

dt
= −2a2

h̄2 β cos(ka)|e|E .

Now the total current will be the current carried by each electron, −|e|vg, multi-
plied by the number of electrons in the range k to k + dk, and integrated over k
between −π/a and π/a for the full Brillouin zone. In one dimension g(k) is a
constant, so

dJ
dt

= ge2E 2a2

h̄2 β
∫ π/a

−π/a
cos(ka)dk = 0,

that is, no current will be established. [3]
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(d) The overlap between wavefunctions for any two different values of k will be

∫
ψ∗

k(r)ψk′(r) dr =
1

N

N∑
n=1

e−ikna
N∑

m=1

eik′ma
∫
φ∗n(r)φm(r) dr

=
1

N

N∑
n=1

N∑
m=1

ei(k′m−kn)aδmn

=
1

N

N∑
n=1

ei(k′−k)na

=
1

N
ei(k′−k)a 1− ei(k′−k)Na

1− ei(k′−k)a

where we have used, in the last step, the formula for the sum of a geometric pro-
gression. Now the allowed values of k and k′ are of the form 2π/(Na), so the
numerator in the last expression is zero and the states ψk and ψk′ are orthogonal for
k 6= k′. [4]
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5. (a) Diamagnetism is caused by currents induced in the material as a result of the im-
position of an external field. Paramagnetism is caused by the alignment of pre-
existing magnetic moments by the application of the field. A superconductor below
its transition temperature acts as a perfect diamagnet. [4]

(b) The quenching of orbital angular momentum is caused by electrostatic crystal
fields. These fields split the degeneracy of the different mL orbitals, by energies
that are large compared with magnetic energies, and the eigenstates are linear com-
binations of the spherical harmonic states, aligned along crystal directions. This
means that the application of a magnetic field can no longer freely reorient the pro-
jection of L –mL is no longer a good quantum number. In rare earths the spin-orbit
coupling is strong enough to couple S and J together even in the presence of crys-
tal fields, so mJ remains a good quantum number. The difference arises because
the f orbitals which are partly-filled in the rare earths are closer to the nuclei, and
the nuclei have larger charges, than is the case in the transition metals. [6]

(c) If there are n ions per volume with spin magnetic moments, with S = 1, we know
that the Landé factor will be gJ = 2 and the expectation value of the magnetisation
is found from the Boltzmann distribution, knowing that the energy of a dipole
m = gJµBmJ in a field B is −mB, and is

M = n
2µBe

2µBB/(kBT ) + 0− 2µBe
−2µBB/(kBT )

e2µBB/(kBT ) + 1 + e−2µBB/(kBT )

= 2nµB
2 sinh(x)

2 cosh(x) + 1
,

where x = 2µBB/(kBT ). The form of the magnetisation as a function of B/T is [3]
shown below. [1]

In the limit of small B/T we may use the fact that x is small, so that

sinh(x) ≈ x

cosh(x) ≈ 1

and thus

M≈ 2nµB
2x

2 + 1
= 2nµB

2× 2µBB/(kBT )

3
=

8nµB
2B

3kBT
,
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so the susceptibility is

χ =
M
H

=
µ0M
B

=
8nµ0µB

2B
3kBT

.

This is in accord with Curie’s law, χ = C/T , with C = 8nµ0µB
2/(3kB). [4]

The low-field susceptibility at 300 K with 1027 ions per cubic metre is therefore [2]

χ =
8× 1027 × 4π × 10−7 × (9.273× 10−24)2

3× 1.38× 10−23 × 300
= 6.96× 10−5.
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